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The eigenvalue spectrum of a large symmetric random matrix 
with exponential distributed elements 

Jens-Uwe Sommer and Hans L Trautenberg 
University of Regensburg, Department of Physics Ill.  D 93040 Regensburg, Federal Republic 
of Germany 

Abstract. A replica solution for the averaged eigenvalue s p e c "  of a large symmetric 
N x N matrix with an exponential distribution p(Mij) = ( ~ / M ~ j ) e x p ( - ~ M j j / M ~ j )  
(MO;) = MO) of the elements is presented. This problem is reduced to the solution for the 
averaged eigenvalue spectrum of a homogeneous matrix Mo;j = MO with an added Gaussian 
random matrix. The main part of tk obtained spectral density is the well known semicircular 
law P(A) = (1j7.r~~ ?) 4M2 A2. In contIitEt to the Gaussivl random matrix an additional 
second spectral region in the vicinity of M o f i  is observed. The analytic result is verified by 
~umencally obtained spectra of such matrices. 

1. Introduction 

The averaged eigenvalue spectrum of a large N x N symmetric random matrix each of 
whose elements has a Gaussian probability distribution of the form 

is well understood. Edwards and Jones [ 11 gave a replica solution for this problem which 
yields the so-called semicircular law [Z]. The physical background of this problem was 
elucidated by Kosterlitz el al [3]. 

The problem of what happens to the density of states &) of a given matrix when 
disorder of the above type is added was investigated by Edwards and Warner [41 using the 
replica trick. 

In this paper the average eigenvalue spectrum of a large symmetric random matrix each 
of whose elements has an exponential distribution of the form 

is studied. MO;) = constant = MO that is equivalent to an unstructured matrix M. The factor 
4% is introduced to be in agreement with [1,4] and is discussed below. 

Exponential distributions are very common in statistical physics and are sometimes more 
natural than Gaussian distributions. Frozen exponential disorder appears whenever gaps of 
random point processes are of interest. An example is the stochastic crosslink process 
of a polymer melt. If the U priori probability po for a crosslink between two monomers 
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is independent of other monomers and crosslink, the probability to obtain N ,  connected 
monomers, that is a gap between the crosslink points of length Nc,  is given by [5,6] 

Nc N e-~nNc,  - 
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(3) P ( N ~  = PO( ]  - PO) 

Nc is the length of the corresponding network chain after crosslinking. 
A further example is the random hierarchical distribution of energy barriers discussed 

by Teitel [7,8]. 
However, the mathematical formalism to solve the problem of the random symmetric 

matrix with an exponential distribution of the elements is somewhat difficult and may serve 
as a further illustration for the usefulness of the replica method. 

2. Replica solution of the averaged eigenvalue spectra 

One has to evaluate the expression 

tp(A)l= J P(M, Ma)p(L M) dM (4) 

for the eigenvalue spectrum averaged over a sample of independent realizations of M. Self- 
averaging is usually assumed for large matrices ( N  + CO). A real symmetric matrix M 
with eigenvalues A.x will have a spectral density 

It was shown by [ I ]  that the identity 

2 a  
NZ ah P ( A ,  M) = -- Im - Indet-'D(i - M) 

holds with 

The determinant can be represented by an appropriate Gaussian integration 

To compute the right-hand side of equation (4) one has to average the logarithm of a 
Gaussian integral. This can be circumvented using the replica trick [9]. 

An exact representation of the logarithmic function is 

The crux is to assume n to be a positive integer to take advantage of the vectorization of 
the integral. The structure average over the matrix M has then to be taken first. Whenever 
possible an analytical continuation ( n  + 0) should be done. 
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In this way we get 

where the replica indices a! are integers in the range from 1 to n. The double appearance 
of replica indices should indicate summation over the given range. The integration over the 
symmetric independent matrix elements yields 

It should be noted that the algebraic expression in equation (12) is just the main problem 
appearing with the exponential distribution. In the case of a Gaussian distribution the result 
is a fourth-order term of q5 in the exponential of Id. J ;  n) of the form 

which will be further evaluated by introducing an auxiliary field [1,4,10]. 
Hence, the result of equation (12) is, at first glance, somewhat disencouraging. However, 

a solution is possible by recalling that the expression $aq4u is of order n. So it may be 
useful to expand equation (12) in powers of ( M o i j / f i ) @ 4 y .  

1 1 
'1 -2@ijV1-@kk i < j  

E n ( 1  f 2 @ i j  f4@ij@ij + ".) n ( 1  f @kk + @kk@kk + " ') 
i < j  k 

with 

@ij %f#q5yMoij ffi 
and further 

) 1 
1 + @ij f 2 c@i]@ij f 5 @ij@kl  + ' ' ' 

i#j i#j (i#j)#(kZI) 

(15) 
x ( l + ~ @ i j f 2 ~ @ i j @ i j + -  1 @ i j @ k [ f " '  

i=j i=J * (i=j)#(k=l) 
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By evaluating the remaining product and regrouping the summations we get 

Equation (16) is nothing other than the leading orders of an expansion of 

Hence, only the fourth-order expression in equation (13) is reproduced, with an added 
quadratic contribution. 

From now on Moij = constant = MO has to be taken. By introducing a Gaussian matrix 
Mij the integral I (X, MO; n)  is reduced to 

By going back over the steps from equation (8) to equation (5) we recover the expression 
for the averaged eigenvalue spectrum of a matrix MO disturbed by a random symmetric 
matrix Mij each of whose elements has a Gaussian distribution 

Equation (19) is the main result of this paper. 
It can be shown that the orthogonal transformation 0 that diagonalized MO within 

the trace operation in equation (19) can be done with no influence on the distribution of 
OTMO [4]. Hence, equation (19) can be rewritten as 

(20) 
For the integral I ( X .  MO; n) we obtain 
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A Gaussian auxiliary field qa must be introduced to reduce the fourth-order term in 
@. The ‘devectorization’ is obtained by the analytic continuation n + 0. Now the q 
integration can be carried out using the saddlepoint method. For details see [ 1 , 4 ] .  If 
g(A, q .  Ak) denotes the exponent of I ( . ) ,  the main contribution of the remaining q-integral 
results from 

The averaged eigenvalue density is then given by 

M A ,  MO)]  = --Im -&o) (23) 
2 d  
x dA 

where qo is the solution of equation (22). By using equation (22) we get from equation 
( 2 3 )  ~41: 

The only problem left is to calculate the imaginary part of the solution of equation (22). 
The eigenvalues of the matrix MO are easy to obtain, see also for example [ l ] :  

We now assume that the solution of the spectra exhibits no overlap between the parts 
arising from the different eigenvalues of MO. This means that equation (22) may be separated 
into two independent solutions for both the different eigenvalues. For the zero eigenvalues 
it yields 

40 1 -+-=o 
Mi A X f q o  

with 

( N  - 1 ) / N  2: 1 ( N  >> I ) .  (28) 

Hence 

Im(qo(A)) = i (4Mi -Az)‘/*. (29) 

The small imaginary part of 
semicircular law of the form 

can, in this case, be neglected. We therefore reproduce the 

A second solution appears for AN = N .  MO. In this case the saddle-point method is not 
satisfactory because of the weight 1 / N  in this contribution of equation (22). In this case it 
will be better to take advantage of the identity 
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where the brackets () denote the average with the integral I ( &  MO; n). Equation (31) 
follows directly after carrying out the differentiation in equation (10) with respect to h. For 
the single eigenvalue AN we get 

In this derivation all correlations of different eigenvalues are neglected. These 
correlations give rise to a remarkable broadening in the density for h,..,~-,. But for isolated 
eigenvalue this is the correct solution, i.e. without saddle-point approximation. Altogether 
we have 

This is correct normalized up to the order I / N  because of equation (28). This slight 
overestimation of the main spectral part should be of no interest here. 

The following points should be noted in conclusion. 
(i) The surprising equivalence of the main part of the eigenvalue density (equation 

(30)) with the corresponding solution for the Gaussian case. Note that for the exponential 
distribution only positive matrix elements occur in contrast to the case of a Gaussian 
distribution. 

(ii) The appearance of a second spectral region far above the first one ( M o a  >> 
2Mo =+ f i  >> 2) which is the only difference to the Gaussian case. 

(ii) The f i  in the exponential distribution (equation (2)) ensures the validity of the 
saddle-point method. Nevertheless the solution in equation (33) also holds for much larger 
fluctuations, which will be shown in the next section. 

3. Comparison of the numerically obtained spectral densities and the analytical results 

To check the analytic results eigenvalue spectra of marrices with a dimensionality in the 
range from 50 to 200 were numerically computed. MO was first set to unity, as demanded by 
the saddle-point approximation. A second set of matrices with MO = 750.0 was diagonalized 
to study the spectra far beyond the range of the approximation. The spectral density of the 
corresponding Gaussian matrices was also computed. To obtain satisfactory data for the 
eigenvalue spectra lo4 matrices were used for each parameter ser The numerical work 
was done on the CRAY Y-MP of the University of Regensburg using NAG routines for the 
diagonalization. 

In figure 1 the eigenvalue spectra of exponential matrices for different choices of N with 
MO" = 1.0 are displayed. The scaling in the main spectral region around h = 0.0 is striking. 
see also figure 3. The second spectral region scales according to equation (32). The case 
M i  = 750.0 is plotted in figure 2. In figure 4 the numerical results of the eigenvalue spectra 
for the exponential and the Gaussian distribution are compared with the analytical result 
of equation (30) for N = 50. The deviation in the case of the exponential distribution is 
somewhat larger than for the Gaussian matrices. Nevertheless there is satisfactory agreement 
between the analytical and numerical results. Note that even in the Gaussian case there 
are small deviations from the theoretical predictions. These deviations cannot arise from 
the saddlepoint method because there is no remarkable difference betwezn M i  = 1.0 
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Figure 1. Spcrral density for muices with an exponential distribution of elements (Mi = 1.0). 

and Mi = 750.0. The other approximation was to neglect the non-symmetric replica 
contribution [lo]. Edwards and Warner 141 argued with a perturbation calculation. However, 
in the case of the exponential distribution, the replica symmetric approximation is more 
difficult due to neglect of higher-order terms in the expansion of the product in equations 
(14) and (15). 

In figwes 5 and 6 the second part of the spectrum is compared with equation (32) for 
N = 50 and both values of Mi. A shift of ahout 1.0% between the analytical and the 
numerical result is observed. However, the width as well as the height are as predicted. 
This is by no means trivial, because the original distribution is exponential rather than 
Gaussian. The spectrum of a Gaussian matrix exhibits no such second spectral region at 
all. 

The shift can be understood by means of a direct pertubation calculation. To do so it is 
useful to divide the matrix M into two parts, i.e. 

Mik = (Mjk)  + GMik (34) 

where the first part results in a simple homogeneous matrix. In this case the eigenvalues 
are: A~,. . , ,N-I = 0 and AN = a. MO. The difference to equation (25) arises due to the 
factor f l  in the distribution function, see equation (2). Ow aim is to calculate the mean 
of the eigenvalue LN by means of the simple Schrodinger pertubation method commonly 
used for quantum mechanical eigenvalue problems. The first order of the pertubation series 
vanishes because (SMik)  = 0, which follows clearly from equation (34). For the correction 
of AN in second order one obtains 

(35) 
( m ~ l b M l m i ) ( m , l b M l m ~ )  

AN 
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Figure 2. Specw density for matrices with exponential distiibudon of elements (M: = 750.0). 
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Figure 3. Numerically obtained spectral density of "ices with exponentid dishibution of 
elements in the main spectral regjon (iw; = I). 

AN should be the undisturbed eigenvalue. The inner brackets and the bars are chosen in 
analogy to the quantum mechanical notation, while the outer brackets again denote the 
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Figure 4. 
exponential and Gaussian distribution of elements (Mi = 1). 

Semicircular law for numerically obtained s p e w  density for matrices with 

Figure 5. 
dislribution of elements in the second spectral region (Mi = 1.0). 

Analytical prediction and numerical results for mahices with an exponential 

average over the matrix ensemble. I m l , , . ~ )  should be the normalized eigenvectors of the 
matrix (M). Equation (35) can be rewritten as 
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Figure 6. 
disrribution of elemem in the smnd spectral region <Mi = 750.0). 

Analytical prediction and numerical results for mabices with M exponential 

Because of the symmetry of the mawix the statistical average yields 

(6Mkf6Mmn) = (8km$. 4- 8k&,)M:/N (37) 

Using the ortho-normalization of the eigenvector set the final result is 

This means a positive shift of the mean position of the single eigenvalue by M o j f i .  
Note that the symmetry of the matrix produces a non-vanishing contribution in the 

second order. Only the second term of equation (37) is responsible for the result in equation 
(38). 

The observed shift in figure 5 is about ( & A N )  N 0.13 and the calulation in the second 
order yields 0.14. For the data in figure 6 we have (&) 2 3.45 and the second-order 
calculation yields 3.87. 

In the case of the main spectral region this calculation makes no sense because of the 
large degeneration in the eigenvalues. Neither is such a shift observable from the numerical 
data. 

In conclusion we can note that the replica solution for the problem of random symmetric 
muices  with an exponential distribution of the elements given by equations (19) and (33) 
can be verified by the numerical calculations. It demonstrates once more that this method is 
very useful for investigating disordered systems even in the case of non-Gaussian disorder. 
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